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INTRODUCTION

Man has always been concerned with the quality and reliability of

the things he fashions for himself, the products of his technology. More­

over, he has continually sought to improve upon his immediate senses as

instruments by which to test these products. Archimedes I jubilant

"eureka" was evoked not primarily because he had discovered the

principle of flotation, but rather because that discovery afforded him

a means of determining whether his king's newly made gold crown had

been unduly alloyed with silver. In this respect, the most gifted tech­

nologist of antiquity was concerned with what today is called nondestructive

evaluation (NDE).

While man's concern with nondestructive evaluation has always

been manifest, his skills and implements for this task have generally

lagged behind his technology as a whole. Indeed, most of the NDE

methods in current practice were developed largely within the past half

century; some are less than a decade old. Moreover, until quite

recently, NDE was commonly regarded as a production shop activity,

a mixture of craft and lore, the province of the skilled tradesman;

rarely (as in the case of Archimedes) was it an area of concern for

the engineer or scientist. As long as se rviceability and safety could

be secured by an engineering approach based on overdesign with large

safety factors, such an unsophisticated approach to NDE was acceptable.

I
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But with the advent of the modern technological era there has

arisen the need for components and structures of unprecedented

efficiency, the design of which demands of the constituent materials

performance close to their ultimate capability. Such a design approach

requires both a greatly improved understanding and exploitation of the

engineering properties of classical materials, and the development

and use of new materials including nonmetallics and composites. With

these developments has come the need for commensurate improvements

in the technology of nondestructive evaluation.

By the close of World War II, dur ing which NDE surged forward

in industrial usage, the "big five" NDE methods (liquid penetrant testing,

magnetic particle testing, X- ray radiography, ultrasonic testing, and

eddy current testing) had reached a mature, though not definitive, state

of development. The post-war years brought with them the introduction

of nuclear power plants, jet powered aircraft, the rocket powered

ballistic missile, unmanned spacecraft, and finally manned spacecraft.

These developments have exerted great influence on the further refine-

ment of the "big five" NDE methods, as well as strain sensing and leak

detection. The deve lopment of entirely new methods, includ ing thermal

and infrared testing, microwave testing, acoustic emission testing, and

holographic tes ting, was also stimulated. Mos t of these refinements

and new deve lopments are founded upon advanced physics and ele ctronics,

"and their"development has required the efforts of highly trained

scientists and engineers as well as skilled technicians.

13



The contemporary period in NDE development is characterized

not only by the introduction of no'{el, sophisticated technical approaches,

but also by a trend away from hand operations and toward substantially

automated inspection systems. By greatly reducing the time required

for inspection and by eliminating the uncertainties typically associated

with "operator dependence" of hand operations, such automated systems

are, in many cases, proving to be cost- effective despite their greater

initial cost. Thus progress in systems engineering, electromechaniCal

design, signal proce s sing, infor mation theory, computer technology,

and cybernetics are increasingly prominent aspects of NDE development.

The aerospace indus tr ies and government agencies concerned

with aerospace development play prominent roles in promoting the

development and growth of NDE. Among these the National Aeronautics

and Space Administration, through its several Centers and many of its

contractors, is a significant contributor. NASA IS contributions to NDE

are, of course, by-products of its primary mission, the development

of advanced aerospace vehicles and the exploration of the space environ­

ment. The extraordinary efficiency and reliability of modern aerospace

structures has been achieved in no small measure because of the system­

atic, painstaking programs of reliability and quality assurance (R&QA)

which have accompanied the development and production of these

structures. In these R&QA programs, nondestructive evaluation plays

1.4



a significant, though certainly not exclusive, role. NASA's influence

on NDE technology is both indirect and direct -- indirect in the sense

tha t NASA IS needs have stimulated deve lopments by their supptie rs,

and direct in the sense of explicit research and development efforts by

both NASA Centers and contractors. Many NASA sponsored advances

in NDE technology have potential applications outside the aerospace

field. This Technology Utilization Survey is intended to serve primarily

as a medium for the dissemination of these developments and for their

transfer to non-aerospace applications.

Throughout industry, popular demand for a greater degree of

quality, reliability, and safety in all products is currently focusing

attention on NDE. The automotive and trucking industry, the railroad

and high- speed ground transportation industry, the pipeline industry,

and the ship building industry all stand to profit from advances in NDE

technology. The electric utility industry, the construction industry,

the horne appliance industry, and the food industry likewise are

recognizing that NDE, properly implemented, can more than pay for

itself through improvements in product uniformity, fewer rejections,

and reduced incidence of in-service failure.

I Typically, the responsibility for recognizing the need for, and

assessing the potential cost-benefit impact of, a new or revised NDE

program in industry rests primarily at the level of middle management.

For members of middle management with such responsibility, a general

1.5



working knowledge of the available NDE methods and their capabilities

and limitations has become a virtual necessity. It is to this audience

that this Technology Utilization Survey is principally addressed. While

this Survey is in no sense intended to be a textbook or treatise, it is

hoped that it will serve the need of middle management for an overview

of the field of NDE as a whole. Although a general technical faculty

on the part of the reader has been supposed, no expert knowledge of

nondestructive evaluation has been assumed.

The Survey is organized into chapters each of which deals with

a major NDE method, with a concluding chapter on several methods

still in the deve lopmental stage. Each chapter contains a brief synopsis

of the fundamental principles and practical procedures in standard use;

the contributions made by NASA Centers and contractors are then

presented against this background. Thes e synopses are re str icted in

scope to the essentials required for a general understanding of the

significance of the NASA contributions subsequently presented. In

pre senting the NASA contributions, emphas is has been placed upon

basic principles and practical significance rather than upon technical

details of implementation.

The primary documentation upon which this Survey is based

consists of the pertinent NASA Technical Notes, Technical Memoranda,

and Contractor Reports'. This Survey is not intended as a substitute for

the primary documentation, but as summary of it and guide to it. The



primary documentation used in prepar ing this Survey is fully referenced,

and readers who find a contribution of potential use to them should refer

to the referenced document(s) for further, more detailed information.

Of the numerous NASA contributions described in this Survey,

one in particular should be noted here. Recognizing that a successful

NDE program depends crucially upon the knowledge and skill of prac­

ticing technicians, NASA has, through a contractor, prepared a series

of instructional materials in each of the most widely used NDE methods

(Refs. 1-18). For each method, the series provides a training hand­

book for use as a classroom text, together with one or more manuals

of the so- called programmed type. Thes e manuals are suitable for

self-study, and are designed to lead the student step-by-step to a

confident grasp of the pr inciples, apparatus, and procedure s of an NDE

method. When used as part of a systematic training program led by

competent instructors, and including a period of supervised apprentice­

ship, these materials provide the student with the knowledge and experi­

ence necessary for expert application of the method at the technician

leve 1. Now available through the Amer ican Society for Nondes tructive

Testing, these books may prove to be the NASA contribution most far

reaching in its impact on the practice of NDE.

As an aid to the novice in NDE, Table I presents in brief out-

line the principal NDE methods discussed in this Survey.

---- I

The Table
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indicates for each method the basic property sensed or measured, some

typical applications, and the most notable advantages and limitations

of the method. Such a table (of which many similar versions are in

circulation) is necessarily incomplete, and is intended to serve only

the purpose of orientation. It should not be relied upon for making

critical assessments of the potential application of a method to a specific

NDE problem.

Finally, a word about terminology. Historically, the te rm

'Inondestructive testing" (NDT) has enjoyed widespread usage. Some

have preferred the term "nondestructive inspection" (NDI). The Ad

Hoc Committee on Nondestructive Evaluation of the National Materials

Advisory Board has stated that "the term nondestructive evaluation

(NDE) is considered more appropriate .•. since: (1) this discipline

also requires the evaluation of test results and inspection; (2) the

words 'testing and inspection' do not properly imply the theoretical

aspects of this field; and (3) the name (nondestructive evaluation) is

more succinct and descriptive." (Ref. 19) The recommendation of

the NMAB Ad Hoc Committee has been adopted for this Survey.

21



REFERENCES

1. Anon.: Introduction to Nondestructive Tes ting. NASA CR - 61204

2. Anon.: Liquid Penetrant Testing. NASA CR-61205

3. Anon.: Magnetic Particle Testing. NASA CR-61206

4. Anon.: Ultrasonics. VoL I - Basic Principles. NASA CR-61209

5. Anon.: Ultrasonics. VoL II - Equipment. NASA CR-61210

6. Anon.: Ultrasonics. VoL III - Applications. NASA CR-61211

7. Anon.: Eddy Current. VoL I - Basic Principles. NASA CR-61207

8. Anon.: Eddy Current. VoL II - Equipment, Methods

and Applications. NASA CR-61208

9. Anon.: Radiography. VoL I - Origin and Nature of Radiation.

NASA CR-61212

10. Anon.: Radiography. Vol. II - Radiation Safety. NASA CR-61213

11. Anon.: Radiography. VoL III - Radiographic Equipment.

NASA CR-61214

12. Anon.: Radiography. VoL IV - Making a Radiograph.

NASA CR-61215

\



13. Anon.: Radiography. Vol. V - Film Handling and Proces sing.

NASA CR- 61216

14. Anon.: Classroom Training Handbook - Liquid Penetrant

Testing. NASA CR-61229

15. Anon.: Classroom Training Handbook - Magnetic Particle

Testing. NASA CR-61227

16. Anon.: Classroom Training Handbook - Ultrasonic Testing.

NASA CR-61228

17. Anon.: Classroom Training Handbook - Eddy Current Testing.

NASA CR-61230

18. Anon.: Classroom Training Handbook - Radiographic Testing.

NASA CR-61231

19. Anon.: Nondestructive Evaluation - A Report of the National

Materials Advisory Board. Publication NMAB-252, National

Academy of Sciences - - National Academy of Engineering,

Washington, D. C .• June 1969. (Available from the National

Technical Information Services, Springfie ld. Va.).



CHAPTER 11

DEVELOPMENTAL METHODS

20 October 1971

Final Manuscript Submitted in Accordance
With Article H, Page 5, of Contract No. NASw-1873

Prepared by

SOUTHWEST RESEARCH INST!TUTE
8500 Culebra Road

San Antonio, Texas 78284

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D. C. 20546

24



TABLE OF CONTENTS

Chapter 11
DEVELOPMENTAL METHODS -- C. Gerald Gardner

LIST OF ILLUSTRA TIONS

INTRODUCTION

ACOUSTIC EMISSION

NASA Contributions

COHERENT LIGHT ME THODS

Holographic InterferolTIetry
Holographic Vibration Analysis
Holographic Contouring
Optical Correlation
NASA Activities

ULTRASONIC HOLOGRAPHY

REFERENCES

BIB LIOGRAPHY

ii

1

1

5

9

10
15
15
16
18

18

22

23

25



Figure

1

2

3

4

5

6

7

8

LIST OF ILLUSTRA TIONS

Elementary Single- Channe 1 Acoustic E mis sian
Monitoring Sys tem

Multichannel Acoustic Emission Monitoring and
Flaw Location System

Stress- Wave Emission Rate and Cumulative Count,
and Crack Opening Displacement (COD) for
2014- T651 Aluminum (ref. 1)

Cumulative Stress Wave Emission Count and Crack
Length Vs % Failure Stress Intensity and Load for
2014- T651 Aluminum. (ref. 1)

Basic Arrangements for Recording and Reconstructing
a Hologram

Tire Flaws Detected by Holographic Interferometry

Two-Frequency Holographic Contour Map

Schematic Diagram of Ripple Tank Arrangement for
Real-Time Ultrasonic Holography

... - -;

3

6

7

8

11

14

17

20



INTRODUCTION

This chapter includes brief accounts of three nondestructive evaluation

(NDE) methods which have been introduced within the past few years. These

are acoustic emission, the use of coherent (laser) light, and ultrasonic holo-

graphy. The fact that these methods are already being put to use in a practical

way, with commercial apparatus already available, is testimony to the rapid

pace at which NDE is currently moving. While these methods have played no

significant role in NASA reliability and quality assurance programs to date,

they are under study for future applications. There is little doubt that by the

time the space shuttle becomes a reality, these .methods will have taken their

place along with other standard methods.

ACOUSTIC EMISSION

When a metal is deformed, various internal processes result in the

generation of elastic stress waves. At the microscopic level, the formation

and movement of dislocations generates stress waves of low amplitude; at the

macros copic leve 1, the propagation of cracks generate s stres s waves of much

larger amplitude. Such stress waves consist of more or less sharply defined

d is crete puls es which propagate outward from their localized Sour ces. Such

a pulse is a superposition of sinusoidal components the individual frequencies

of which cover a broad range from essentially zero Hz to many MHz. The

process of generation and prop a gati9,\of these

')

stress waves has come to be
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called acoustic emission, despite the fact that in most practical cases only the

ultrasonic components are detected. The prospect of "listening" to acoustic

emission with appropriate instrumentation and thereby nondestructively charac­

terizinga specimen is apparent. Although of great interest from a fundamental

point of view, the detection of low-level acoustic emission associated with

individual dislocation processes is at present useful only under controlled

laboratory conditions. On the other hand, the detection of acoustic emission

from a propagating macroscopic crack has proved to be practical. Instrumenta­

tion for this purpose, of varying degrees of sophistication and complexity, is

now offered commercially by a few firms. In addition, some firms provide,

on a contract bas is, fie ld service units of the mos t complex type.

Figure 1 is a block diagram of the usual components in a simple, single­

channel acoustic emission monitor system. Sensors of various types are in

use, virtually all of them based on piezoelectric materials. The differences

among these are in natural frequency, bandwidth (produced by damping, at

the expense of sensitivity), and vibratory mode (longitudinal or shear). It is

important to recognize that the output signal from such a transducer is not in

general a precise reproduction of the elastic stress wave impinging upon it.

When affected by a stress wave packet of short duration, a high-Q (narrow

bandwidth) detector is simply shocked into vibration at its natural frequency,

and thereafter "rings down", the damping time being inversely related to Q.

A damped, low Q detector, while less sensitive, produces an output which is
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a more precise analogue of the stress wave. Piezoe lectric accelerometers

have been used as acoustic emission detectors in the low to intermediate

frequency range. The bandwidth and transfer function of the amplifiers and

filters used also affect the signal finally observed. A high-gain, low-noise, wide­

bandwidth preamplifier properly matched to the transducer is especially important

if the spectral properties of the acoustic emission are of interest.

At present, most acoustic emission monitoring systems are based on 'the

simplest possible signal processing, namely that of merely registering the

arrival of a discrete stress wave packet. Systems differ in their ability to dis­

tinguish the arrival of a new packet from a. variation in amplitude of a single

packet of complex shape.

It has been experimentally demonstrated that the rate of emission of

s tre s s wave puls es, as detected by acous tic emis sionmonitors, increases with

the rate of growth of a macroscopic crack in a variety of materials. Hence,

one application of acoustic emission monitoring is the surveillance of structures

subject to possible catastrophic fracture. Prominent examples of the latter are

pres sure ves se ls and airframe s.

Another application of acoustic emission monitoring is the location of

propagating cracks by detecting a stress wave pulse with an array of two or

more transducers. By measuring the differences in times of arrival of the

stress wave at each of the transducers, the source may be located geometrically

by triangulation. Rather elaborate systems employing many transducers and a

digital computer programmed to perform the triangulation calculations on
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structures of considerable complexity (e. g., intersecting cylinders) have been

developed. A block diagram of such a system is shown in Figure 2. Major appli-

cations to date have been on large storage tanks and on nuclear reactor pressure

vessels during proof tests.

Further effort is being devoted to the development of better transducers,

coupling methods , and signal analysis; to studying the effect of rna ter ial prope rtie s

and specimen geometry on the propagating stress wave; and to the correlation of

rate of emission and other signal characteristics with flaw type, size, rate

of propagation, etc.

NASA Contributions

NASA has, through a contractor, investigated the potential of acoustic

emission monitoring for surveillance of rocket motor cases during proof pressure

testing. The contractor concluded that the study illustrated the presence of a

"critical stress-wave signature" the detection of which would indicate imminent

failure in sufficient time to permit reduction of the pressure and thus prevent

catastrophic destruction of defective motor cases (ref. 1).

In a further inves tiga tion by the same contractor, the corre lation of

stress-wave- emission characteristics with fracture in aluminum alloys was

studied. Standard laboratory pre- cracked flat tensile specimens were used.

Typical results obtained are shown in Figures 3 and 4. Figure 3 shows the

cumulative stress-wave emission count and the test specimen crack length as

functions of the applied tensile load for the representative single-edge-notch

specimen of 2014- T651 aluminum. Figure 4 shows a graph of s tre s s-wave-

\
i
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emis sion rate, accumulated stres s -wave- e mis s ion, and crack opening displace-

ment, versus applied load, for a specimen of the same alloy having a part­

through crack. From this and similar data, the contractor concluded that

stre s s-wave- emiss ion accompanying crack growth could be used as a pre cursor

to the onset of a critical stress- intensity failure condition, although substantial

differences in stres s-wave- emiss ion character istics were found among different

aluminum alloys tested (refs. 2 and 3).

COHERENT LIGHT METHODS

A number of related NDE methods based upon the coherence property of

laser light are under development. The most important of these thus far are

holographic inte rfe rometry and multi- frequency contouring. Optical cor relation

and laser speckle effects are still essentially confined to the laboratory. All

of these methods are based upon the idea of sensing more or less subtle features

of the surface of a test specimen. If a flaw or damage mechanism does not (or

cannot nondestructively be made to) alter the shape of the surface of the specimen,

coherent light methods are inapplicable (excluding the case of transparent

materials). Holographic interferometry provides a means of comparing an

object either with a holographically recorded image of itself, or with that of

another closely similar object, thus making evident regions where the shapes

differ. Multifrequency contouring provides a means of making a " re lief map"

of the surface of an object, with the capability of making evident very minute
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relief features. Optical correlation provides a means of comparing a surface

with a holographic record of the same surface at a previous time, the compari-

son being on the microscopic scale of crystalline dislocation features; the method

currently employed produces an electronic signal the amplitude of which is

proportional to the degree of similarity (i. e .• correlation). Speckle effects

provide much the same sort of information as optical correlation but requires

only an ordinary photograph of the laser-illuminated surface rather than a

hologram of it.

Holographic Interferometry

A hologram is a photographic>:< recording of the interference pattern

created in the photographic emulsion by two beams of light, one of which is

reflected by a particular subject, and the other of which is a reference beam.

The basic arrangements for recording and reconstructing a holograrn is shown

in Figure 5a and 5b. When the exposed photographic plate is developed the

resultant image of the interference pattern is essentially a somewhat compli-

cated transmission grating capable of diffracting a transrnitted beam of light.

If the holograrn is illuminated by the original reference beam used in making

it, that beam is diffracted in such a manner that the light diffracted on either

side of the directly transmitted ("zero order") beam has wave fronts correspond-

ing precisely to the wave fronts originally emanating from the subject. The eye

-'-." Media other than photographic emulsions are being explored, but are not in
common use.
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(or a lens) sees these reconstructed wave fronts as images of the original sub­

ject. One of the images is "virtual", i. e., it appears to be behind the hologram

in the location of the original object; the other is "real" i. e., it appears in

front of the hologram and can be displayed on a screen or viewed as a "space

image". Only the virtual image is used in holographic interferometry. Since

the holographically reconstructed wave fronts which produce the images have

all the features of the wavefronts which originally emanated from the object,

the images are truly three-dimensional; when viewed by the eye such an image has

the appearance of depth and parallax.

Holographic interferometry is accomplished by replacing the developed

hologram in its original position with respect to the object, the reference beam,

and the illumination beam. Under conditions of precise repositioning, the

virtual image of the object spatially overlaps the object itself, and, to the eye

or came ra, appear s to merge with it, If, however, the obje ct itse If has changed

dimensionally, a ray radiating from a point on the illuminated object, and pass­

ing through the hologram directly to the eye or camera, will in general differ

in path length from that of the corresponding ray from the virtual image of the

object. Because of this difference in path length, a corresponding phase

difference exists, and an interference fringe pattern occurs. The observed

fringe pattern can be analyzed to yield the deformation of the object with respect

to its original for m at the time its hologram was made.

As described above, the interference fringe pattern can be observed or

photographed in real time; thus this method lends itself to the study of



deformations induced by applied mechanical loads or by thermal stressing. An

alternate method, caLLed the double-exposure method, is to record on a photo-

graphic plate the hologram of the object in its reference condition, and subse-

quentLy record in the same (undeveloped) plate the hologram of the deformed

object (being careful to preserve the arrangement of obj ect, light beams, and

photographic plate). When developed and iLLuminated with the reference beam

.
(this time with the actual object removed), the reconstruction contains the

superimposed images .of the object in the two conditions to be compared, and

an interference fringe pattern is also constructed.

Figur~ 6a is a photograph of a real-time holographic interferogram of

a portion of the inner surface of an automobile tire. The larger contours are

not indicative of flaws; however, the chain of smaLL, fine contours is indicative

of localized ply separations. Figure 6b is a photograph of a section through the

same tire showing the actual ply separations nondestructively indicated in

Figure 6a.

Real-time holographic interferometry is being applied, on an experi-

mental basis, to the detection of flaws in pneumatic tires, disbonded regions

in honeycomb composite structures,. and the like. It is also being investigated

as an approach to compare the shape of production line items of precision shape

with a holographicaLLy recorded "master template II.
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a. Holographic interferograrn of portion of tire interior

Section through san1e tire revealing ply separations
associated with features of th(~ intcrferogram
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Holographic Vibration Analysis

If a time-exposure hologram is made of an object undergoing cyclic

vibration, the resultant time-averaged hologram, when reconstructed, shows

a time-averaged fringe pattern which defines the vibrational modes of the sur­

face and their nodal regions. This holographic approach to vibrational analysis

can also be used to detect flaws which produce vibrational anomalies. The

method is, however, not a real- time method; it requires development and re­

construction of the time-averaged hologram.

An alternative, real-time approach to holographic vibrational analysis

is to prepare a reference hologram of the object at rest, set up the system for

conventional real-time interferometry, set the object to vibrating, and then

stroboscopically observe the dynamic interference fringe pattern.

Holographic Contouring

If simply a I'relief map" of a surface is desired, holographic differential

interferometry need not be resorted to; more direct methods have been developed.

One method is the dual-source method in which a hologram of an object is

prepared using two mutually coherent point sources of laser light as the illum­

ination beam. The interference pattern of the two sources, formed on the sur­

face of the object, appears in the reconstructed holographic image as contours

defining the relief features of the surface. An alternative, and generally

superior, approach is to use an illumination beam and a reference beam each

made up of two wavelengths rather than one. Several lasers are available

which provide such beams. When the resulting hologram is illuminated by a
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single-frequency laser beam, two images with slightly different positions are

produced. These two images interfere, and (for appropriate geometries) the

resulting image contours are accurate indications of surface relief. Figure 7

shows a two-frequency contour ITlap of the surface of a coin. The two wave-

o 0

lengths used were 6328A and 6118A. Each fr~nge interval represents a depth

difference of 9. 25pm.

Holographic contouring has not thus far found as many promising appli-

cations as an NDE ITlethod as has holographic interferoITletry. One laboratory

application is in the study of surface strains associated with fatigue damage.

It ITlay also find application in evaluating the perfection of precision parts such

as roller bearing components.

Optical Correlation

With the real-time holographic interference arrangement, if, instead of

using a final imaging arrangement to make a photograph of the object and its

s uperpos ed, holographically produced, virtual iITlage, the. light pas sing through

the hologram is brought to a focus by a single lens, the intensity of light at

the focal spot is proportional to the degree of correlation of the real object and

its virtual image. Thus a photoITleter located at the focus of the lens can, in

effect, produce a signal proportional to the degree of correlation. It has been

demonstrated that by this method fatigue-induced changes in the surface micro-

structure of a fatigue specimen can be detected and measured prior to the onset

of vis ible cracking. The method has thus far not progres sed beyond the labora-

tory demonstration stage.
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NASA Activities

NASA- sponsored work in holographic instrumentation applications

through 1969 has been reviewed elsewhere (ref. 4). Only some highlights of

potential importance in NDE will be mentioned here.

Th-e visualization of fluid flow fields by holographic techniques has been

investigated both at NASA Centers and by NASA contractors. The potential

advantage would appear to be in very low pressure gases, characteristic of the

upper atmosphere. Holographic vibrational analysis is also being studied for

application to aerospace structures. An investigation of considerable interest

for NDE is the use of coherent light to create visual images from microwave

holograms. All these investigations are presently in exploratory or early

development phas es.

ULTRASONIC HOLOGRAPHY

Optical holography was made possible by the development of practical

sources of coherent light. Sound, like light, is a wave phenomenon, though

of an entirely different kind; furthermore, sources of coherent sound have

been available for centuries. Yet, strangely, no one appears to have thought

of making "sound holograms" until after optical holography was developed.

Although sound holograms could in principle be made using sound of any fre­

quency, from the point of view of NDE, ultrasonic frequencies are most

useful; hence the term "ultrasonic holography'l is preferred. over the term

"acoustical holography" which is sometimes used.
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An ultrasonic hologram is made in a manner similar to that in which an

optical hologram is made; ultrasonic waveS simply take the place of light waves

in the illumination beam and reference beam. Of course, photographic film can­

not be used directly to record the resulting interference pattern. While various

schemes have been proposed for record~ng ultrasonic holograms, thus far the

only one to meet with any significant degree of success is the so-called ripple

tank. The hologram is produced by action of the interfering ultrasound beams

impinging upon the water surface to produce a steady-state ripple pattern, the

hologram. This may be photographed (under appropriate illumination) to give

a permanent hologram from which the image can be reconstructed and made

vis ible by illumination with a visible-light laser beam. This method of recon-

struction is somewhat impractical because the reconstructed image is smaller

in lateral dimensions than the original scene by the ratio of the wavelength of

the light used to the wavelength of ultrasound used, a very small fraction. A

more practical method, which also has the advantage of being a real-time

method, is to illuIT1inate the ripple pattern with a coherent light beam and view

the hologram by reflection, as shown in Figure 8. The demagnification effect

still takes place; however, this may be overcome by viewing the reconstructed

scene through appropriate magnifying optics. A closed-circuit television system

may also be used to view the image. A system incorporating these features is

-now offe red by a commercial manufacturer.
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FIGURE 8. SCHEMATIC DIAGRAM OF RIPPLE TANI~

ARRANGEMENT FOR REAL-TIME
ULTRASONIC HOLOGRAPHY

46



Ultrasonic holography has the advantage of presenting a visual image of·

what the ultrasound "sees" in the bulk of an inspected obj ect, a feature which

can be a great help. However, the method also has disadvantages. First, the

resolving power of the syste.m is intrinsically limited by the wavelength of the

ultrasound used. Secondly, it is difficult to apply the method to objects of

irregular shape; mode conversion at the interface of the water and the inspected

object and multiple internal reflections and scattering create problems. Thirdly,

the size of object that can be inspected is limited by the size of water tank avail­

able and by attenuation in the inspected object. These disadvantages are subject

to amelioration through further research and development, and it appears likely

that ultrasonic holography will in the future find wide application in NDE.

An alternative, essentially nonholographic, method of using ultrasound

and laser light to create a visual image of the interior of an object has also been

developed. This method, which depends uponBragg diffraction of light by the

sound beam, is still in the research stage; commercial versions have not been

developed (ref. 5).
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